

Page 1 of 9

Software localization testing at iSP

1. Testing services offered by iSP... 1
2. Test management .. 4
3. More terminology ... 6
4. Recommendations... 8

This document gives background information on iSP's testing services. It explains what
exactly happens during linguistic testing, (localization) UI testing and functional testing
and it explains some of the terminology relating to testing. There are also some
recommendations in the document for approaching localization testing.

1. Testing services offered by iSP

We distinguish between three types of software localization testing in our service
description depending on what is tested:

1. Language: Linguistic test
2. Layout: Localization UI test
3. Functionality: Functional testing

1.1. Linguistic test

Definition
The linguistic test (or language test) is characterized by the fact that it is performed by a
native speaker. The intention of the linguistic test is to carry out a linguistic evaluation of
the product from the perspective of the end user. All linguistic testing at iSP is performed
by native speakers of the language who are trained as experts in the product.

Items to check during linguistic testing

Context of the text Linguistic testing checks whether the text is in the right context

and reveals any previously unseen problems. Note however,
that the linguistic test is not a pure text review activity. Text
review should happen much sooner as an integral part of
translation. (The sooner a change is implemented, the less
costly it is.)

Text concatenations Concatenation problems sometimes only become clear during

Page 2 of 9

testing. For example two strings are copied together which the
translator did not expect during translation.

Consistency The linguistic test should apply a comprehensive perspective.
Is there for example text in a dialog, which makes reference to
another dialog ? Or is there a reference to an item in the
localized operating system? It is important to check that these
references are consistent.

Layout The layout aspect overlaps with the Localization UI test done
by technical resources, but trained linguistic testers still need to
be familiar with UI standards and report related problems. A
linguist can detect certain problems (e.g. truncations) better
than a technical resource because they can read the foreign
language text. Other aspects like consistent layout across
languages are better checked by technical resources.

As there is overlap between the linguistic and technical
resources, it is important to make the proper agreements as
otherwise two teams will report the same issues. If possible,
plan linguistic and technical testing sequentially.

Code set issues This overlaps also with the UI test because although Engineers
and Testers ensure that the right code set is applied, this should
also be confirmed from a linguistic perspective. The aim is to
check how characters are displayed ("corrupt characters"), but
also includes issues such as alphabetic sorting.

Untranslated text or text in a
wrong language

Again, here is an overlap with the UI test because Engineers
and Technical testers in the project should make sure no
untranslated text or text from another language is used in the
application, but this aspect is also an important part of the
linguistic test.

Non text elements These kind of problems are not so common. However, it is
good to keep this in mind. Think about the "B" button for Bold
for example.

1.2. Localization UI test

Overlap with linguistic testing
The localization UI test verifies the interface of the application, and because linguistic
testers (who do the linguistic test) also need to be familiar with UI standards, there is a
certain overlap. At iSP, we find it most efficient to plan testing in such a way that
technical resources already perform sufficient testing before the linguistic resources start
so that the linguists can focus on the truly language related aspects. Specifically for
projects with several language localizations, this approach has its efficiency gains.

Scope of the test
The localization UI test checks the layout of the localized application whereby a general
rule is that the localized application needs to look the same as the original application.
Because of this, the typical test setup includes both versions of the application to test, the

Page 3 of 9

original and the localized side-by-side. While the original application is the baseline for
testing, the testers will of course also report clear mistakes in respect to UI guidelines
which exist in both localized and original application.

Difference to testing in WYSIWYG editor
Application interfaces can often also be checked in a WYSIWYG editor such as
Developer Studio. At first sight you might wonder why there should be yet another test in
the live application. However, there may be differences between the appearance of the
application UI as it appears in a WYSIWYG editor and the live application - this defines
the localization UI test. Nonetheless, it is very efficient to make use of the WYSIWYG
editor to already filter out the UI problems which can be seen there.

Items to check during localization UI testing

UI Standards Generally speaking, the localization UI test makes sure that the localized

product looks the same as the original product as baseline. Beyond that,
a good general guideline is to refer to developer guidelines for the
operating system. The Windows Vista User Experience Guidelines for
example include a chapter "Aesthetics" which mentions guidelines like a
standard button size of 50 x 14, right alignment of commit buttons and
many more.

Code set issues This overlaps with the linguistic test, so it is a good idea not to plan the
linguistic test too soon to avoid duplicate efforts. Already try to filter out
these kind of problems prior to compiling, and then make it a part of the
localization UI test.

Untranslated text or text in a
wrong language

This is another item which overlaps with the linguistic test, so again, it
is good to avoid testing this twice. Also this aspect can be already be
largely filtered out prior to compiling.

Truncations This means checking that the text fits in the UI. Non native speakers are
not always aware of text not fully displaying, so again, the linguist test
serves as a second filter for this problem category. Note, that this test
can be partially supported by tools.

Alignment of text The alignment should theoretically follow the original UI specifications
automatically, but in some cases it can differ in the localized version
(e.g. text wraps to another line), and sometimes where UI coordinates
are leveraged together with the text, an item may appear at an
unexpected position.

Access keys and shortcut keys Both access keys ("hotkeys") and shortcuts are used to execute
commands from the keyboard, but they can be easily distinguished:

Access keys are the underlined characters in a menu or dialog
and they are only available in this specific context. They are
activated using the Alt key.
Shortcut keys are usually Ctrl/Shift/Function key
combinations and are not context-specific. Whether shortcut
keys are localized is not always clear, so it is important to
verify.

If shortcut keys are localized, it is important to check that references to
them are consistent and that they can actually be reached on different
types of keyboards.

Page 4 of 9

Access keys are always localized because they make use of the strings
shown in the menus or dialogs and therefore their uniqueness must be
tested in the application. Fortunately, their uniqueness can already be
tested in the UI WYSIWYG editor (a localization environment like
Alchemy Catalyst can test this automatically), but the live test needs to
consider where different UI components are combined at runtime in
order to test for unforeseen results.

Both shortcuts and access keys can be mnemonic, i.e. the letter which is
used has an association with the command.

1.3. Functional test

Focus of the test
If an application is internationalized well, functional behavior is normally not at a too
high risk for working in a localized product, i.e. the functional test on a localized product
can focus on whether the localization process introduced any problems.

Original product is baseline
The functional test verifies if the application does what it is supposed to do. In order to
simplify the testing process, functional testing on a localized product will typically take
the original application as a baseline.

How to set up a testplan
The functional testing can usually be planned easily by using the original test plans as a
basis. Sometimes however, there are cases where no original test plans are available or
where a short and reduced functional test is required. In these cases, a good guideline can
be a menu walkthrough or referring to the table of contents of the program help. It speaks
for itself that the people who carry out the functional test should know the application
well.

2. Test management

Testing is managed centrally
Next to performing the linguistic testing, localization UI testing and functional testing,
iSP also does the test management. While different testing activities are carried out by
different types of resources, test management is a centralized activity, usually carried out
by the technical group.

Setting up test plans

Page 5 of 9

Test management involves gathering or setting up test plans, grouping them and
scheduling them on the timeline of the project. Sometimes test plans are available from
the client and in other cases they are not available. In the latter case it is advisable to
evaluate how big the need for documenting test cases is. Sometimes the knowledge of
testers is underestimated and valuable time is spent on over-documenting test cases. This
consideration should of course not lead to skipping the documentation altogether.

Document test case requirements
The test documentation should also describe test requirements such as hardware and
operating systems, but also other programs, tools, settings and test files. Don't
underestimate how much time you can save by providing the right test files, especially in
multi language projects.

Setting up the test infrastructure
Setting up the actual infrastructure in the test lab is also part of the test management
activity. This includes the computers with their operating systems and any other required
software. Setting up the infrastructure needs to include a solution for starting test cases
with a clean environment. Hard disk cloning software like Ghost or emulation software
like VMWare can help achieving this.

The bugtracking system
Very often localization services providers test localized software for clients who test the
original software themselves. As problems (and their solutions) are often repeated from
the original version to the localized versions, it is advisable to share the same system. The
system should enable the logging of localization specific information and have fields for
entering the application and platform languages and other localization aspects.

Working with bugs
It is important to train the testing team on the requirements for logging bugs and on using
the bug tracking system correctly. The typical scenario for using a bug tracking system is
that a tester logs a bug, an engineer accesses the bug tracking system and fixes the bug,
and the same tester accesses the system again and declares that the bug is closed (or
returns the bug to the engineer if not). Finally, another activity of test management is the
monitoring of bugs in order to oversee trends during the project (for example number of
new bugs per day and number of bugs fixed on a day).

Page 6 of 9

3. More terminology

The following is a list of terms which have not been explained yet in the previous
sections.

Quality assurance Quality Assurance is a broader concept than testing. Testing the product is

an analytical activity which verifies expected quality of the product.
Quality assurance refers to the complete development process: "SQA
[Software Quality Assurance] encompasses the entire software
development process, which may include processes such as reviewing
requirements documents, source code control, code reviews, change
management, configuration management, release management and of
course, software testing." (www.wikipedia.org)

Internationalization
testing/localization
readiness testing

The testing activities mentioned in this document are about testing a
localized product. Internationalization testing happens sooner and is
integrated into the development of the original product. It uncovers
problems which can be expected in the localization process in order to
eliminate them at the source.

Pseudo Localization testing Pseudo Localization Testing resembles localization testing because it is
carried out on a compiled product which uses dummy strings in place of
the original strings (usually strings are made a certain percentage longer
and extended characters are inserted), but in terms of the development
cycle, pseudo localization is an activity which happens before localization
because its idea is to filter out problems before starting localization. In this
sense it can be seen as an activity of internationalization testing.

Online documentation
testing

Online documentation testing refers to help and other types of online
documentation, rather than software. There are special tools and
techniques used, so online documentation testing is usually carried out by
online documentation specialists, and you can typically do a good deal of
testing outside the software, what is also easier for planning purposes.
Some aspects like context-sensitivity or consistency between software and
online documentation still need to be checked with the software.

Regression testing Regression testing means to test a set of features and functionality which
must stay the same from update to update. The challenge is to find
efficient techniques for regression testing in order to focus on the new
features. As regression testing often uses the same test cases from update
to update it is a good candidate for automation. If there were problems or
fixes to problems in one version, regression testing makes sure that these
are re-checked in the next version.

Smoke test Smoke test means to test the bare minimum in an application, only to find
out whether the application is good enough for further testing or not.

Automated testing Automated testing means using scripts in order to carry out testing
activities. For testing (localized) interfaces, automated testing calls up
certain parts of the UI by invoking internal program commands or simply
by capture and replay.

Black box, white box testing Black box testing means testing a program without insider knowledge
about the code and internal working of a program. White box testing is the
opposite and means testing a program by making use of the knowledge of
its internal structure. All localization testing activities are usually black
box tests.

Page 7 of 9

Performance testing Performance testing is a test type with the focus on how quickly an
application does what it should do. It measures certain performance factors
and compares this to the expectation. You can also put the application to a
test under very heavy conditions (run many programs simultaneously,
heavy network traffic etc.) and test if it still performs satisfactorily (stress
testing).

Installation testing During installation testing testers install and de-install the application.
Installation testing is usually carried out on a clean system where only the
OS is installed. This is to prevent that an application depends implicitly on
another program which is present on many but not all systems (e.g. MS
Office). Then during de-installation, testers verify that all components are
removed and that installers of different versions work well together.

Integration testing Integration testing means putting the individual modules of an application
together and testing their interaction. In a bit broader sense, integration
testing is also testing how an application interacts with other programs and
its environment in general. From a UI layout perspective, it is important to
test the integration of UI items into other UIs.

System testing System testing focuses on how the application behaves in its operating
system. Testers for example need to check for certain conditions such as a
missing network connection.

Acceptance testing Acceptance testing refers to the producer / developer - client relationship.
It takes place after the developer releases the program, and and must then
be approved by the client.

Page 8 of 9

4. Recommendations

The following list contains some recommendations for a client/vendor scenario for
outsourcing localization testing.

Establish the scope well
Make solid arrangements about what should be tested, how the scope is defined, and
when testing is satisfactorily completed.

Share information between core test team and localization vendor
Share test plans, use cases, example scenarios, test files, settings files with the
localization vendor. This can save a lot of time (and cost)!

Train testers on the product
Establish a good compromise between too little and too much training, but there should
be a sound basis of familiarity with the product, its concepts and knowing how to use its
basic features.

Warm up and allow time for setup
This is an extension of the previous item. Next to training, check that the infrastructure is
well set up, that all required items exist, familiarization with known issues, problem areas
etc.

Ensure scalability
Good planning and estimating the scope is important, but scalability is equally important.
The vendor needs to have the capacity to scale the team up and down during the project.
Discuss the bandwidth and lead times, and how expansion is realized!

Make sure the UI has been checked in the source files
It is good practice to use a tool set to verify the UI from a WYSIWYG editor. iSP
recommends Alchemy Catalyst which has very elaborate QA features to check for
truncations, overlapping items, conflicting access keys and more. Releasing the
application to test without making use of this possibility would be very inefficient as it
usually costs a lot more time to find and fix these problems later.

Establish responsibilities and the workflow well
This aspect is very closely related with the bugtracking system as a common platform for
defining the workflow. Who has which access rights, who may close bugs, and what
agreements are made about timing of fixes after bugs are found?

Determine the UI freeze milestone
The UI freeze milestone usually defines the point in the localization schedule where the
UI is considered final and references in documentation may be finalized. It usually also

Page 9 of 9

means that screenshots can be finalized. It relates to testing insofar as the UI-relevant
testing needs to be closed by then.

Scheduling advice
A good way of scheduling is to start with UI test (technical resources), fix the UI issues,
then perform the Linguistic Test, enter linguistic changes, and finally perform the
Functional test.

